Geometry.Net - the online learning center
Home  - Scientists - Kaluza Theodor Bookstore
Page 5     81-94 of 94    Back | 1  | 2  | 3  | 4  | 5 
A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

         Kaluza Theodor:     more detail
  1. Die Tschirnhaustransformation Algebraischer Gleichungen Mit Einer Unbekannten (1907) (German Edition) by Theodor Kaluza, 2010-09-10
  2. Theodor Kaluza
  3. Die Tschirnhaustransformation Algebraischer Gleichungen Mit Einer Unbekannten (1907) (German Edition) by Theodor Kaluza, 2010-09-10
  4. Las dimensiones desconocidas: nuestro concepto familiar del universo es que tiene 3 dimensiones, 4 si se añade el tiempo, pero según varias teorías ahora ... percibirlas.: An article from: Contenido by Juan José Morales, 2006-09-01

81. Der Polnische Parteistaat Und Seine Politischen Gegner 1944-1956 Kaluza Andrzej
Translate this page Titel Der polnische Parteistaat und seine politischen Gegner 1944-1956. AutorKaluza Andrzej. Baustein Lyrik I/2. Lyrik Storm theodor Pole Poppenspäl
Der polnische Parteistaat und seine politischen Gegner 1944-1956 Kaluza Andrzej
Titel: Der polnische Parteistaat und seine politischen Gegner 1944-1956.
Autor: Kaluza Andrzej
Rubrik: Philosophie Allgemeines Lexika Rechtsgeschichte Polen Politik Zeitgeschichte Recht
Lorenz Johannes, Deutsch Phys...


Neis Edgar Interpretationen m...

Neis Edgar Interpretationen m...

Introduction The concept of extra dimensions originated in the 1920s as a seriousapproach to unifying electromagnetism and gravity by theodor kaluza and Oscar
Introduction The concept of extra dimensions originated in the 1920s as a serious approach to unifying electromagnetism and gravity by Theodor Kaluza and Oscar Klein. Just as Einstein introduced the extra dimension of time to create the idea of space-time, the four dimensional fabric of our universe, so Kaluza and Klein proposed that there might in fact be five dimensions. The reason for extension to higher dimensions was geometrical. The mathematics of Kaluza-Klein theory matches reality more closely if an extra dimension is included in the calculations. However, in subsequent years, it was found that the theory suffered from extreme faults, thus the idea of a higher number of dimensions was abandoned until the rise of superstring theory in the 1980s. Superstring theory is a combination of string theory and supersymmetry, and so far is the only viable way of combining general relativity and quantum mechanics, the cornerstones of modern physics. Therefore, it will be necessary to give a general overview of these theories to show their conflicting points and to show how superstring theory resolves some problems. It emerged that superstring theory requires one dimension of time and nine of space for the mathematics involved to be functional. Therefore, to correborate string theory, the physics community must endeavour to detect these possible higher dimensions. The difficulty of this task and the accuracy of the required experiments will be discussed. Unfortunately, the adaptation to ten dimensions allowed five different string theories to be mathematically possible, none of which was a perfect approximation for the universe we observe. This cast doubt on the validity of string theory until the advent of a new eleven-dimensional theory, M-theory, which emcompassed all five possible string theories. M-theory is as yet incomplete, but its implications are astounding. It may help to explain many of the problems facing cosmologists and particle physicists in the future, such as dark matter, the cosmological constant and the search for a plausible Grand Unification Theory (GUT). Therefore, this report aims not only to explain the basic concept but also to assess what level of experimentation is needed to obtain evidence for any higher dimension designated by M-theory. The possibility of extra dimensions Intuition tells us that there are three dimensions of space and one of time, making it difficult to conceptualise how six extra dimensions could manifest themselves in reality. If these dimensions do exist, why do we not experience them? Brian Greene gives an answer to these salient points in "The Elegant Universe" (ref. 1) by drawing an analogy to the surface of a garden hose. Imagine viewing an unfurled taut garden hose from a great distance. When considering an ant on the hose, only one coordinate (along the length of the hose) is needed to specify the ant's position. This is because the width of the hose looks negligible from the viewing point, so that effectively the hose has become a line. Nevertheless, the ant, restricted to the surface of the hose, knows that there is another dimension it can move in: the curvature of the hose. To the human observer, it is as though the extra dimension is curled up within every point on the line. An extension of this analogy must be made for three-dimensional space in order to imagine how higher dimensions could exist. For every point in our three-dimensional universe,there must be curled-up dimensions which must be very small in relation to human scale to have avoided perception. In fact, since at least six extra dimensions are necessary, current opinion is that for every point in space-time there is attached a Calabi-Yau shape: a curled-up six-dimensional structure on the scale of the Planck length. This is about (ten to the ****whatever) and is the scale below which constant fluctuations in the fabric of time become significant, causing many conflicting theoretical problems. These inconsistencies are due to the contradictory natures of general relativity and quantum mechanics, which were combined to form string theory. Superstring Theory Superstring theory is string theory that incorporates the principle of supersymmetry. String theory arose from the need to unify gravity with the weak, strong and electromagnetic forces as the incompatibility of quantum theory and general relativity became apparent. Quantum theory versus general relativity Quantum mechanics has been used to unify the weak, strong and electromagnetic forces successfully. Nevertheless, until superstring theory, a quantum theory of gravity remains elusive. This is because quantum theory is non-deterministic and probability-based, whereas general relativity, the theory we use to understand gravitational forces, is decidedly based in classical (Newtonian) physics. The basic principle of quantum theory is that all particles obey a wave function. The probability of a particle existing at any point is given by the square of the value of its wave function at that point. Thus all particles display wave-like properties. Consequently, the outcome of an event can never be absolutely deteremined, only a measure of probability of possible outcomes can be calculated. Quantum mechanics is only important on a microscopic scale since the microscopic world contains a huge number of particles so that their overall behaviour follows classical mechanics. General relativity is used on a cosmological scale, since gravity is negligible in comparison to the other fundamental forces at short ranges. Therefore it is a classical theory. Also, gravity poses a problem when attempting to achieve a theory that unifies the forces as it is so mysteriously weak. General relativity was born when Einstein introduced the idea that what we concieve of as space is actually four-dimensional space-time. Matter distorts the fabric of space-time so that gravitational forces are nearly due to the curvature of the surroundings. Somehow, this model has to be made compatible with the interpretation of the fundamental forces as a result of the exchange of their respective force particles, widely accepted by quantum theory and supersymmetry. Previous quantum gravity theories have proved to be inadequate since the calculations kept stumbling upon inponderable infinities, making the equations unworkable or resulting in outcomes with probabilities of less than or greater than 1, a sure sign that the theories were unfeasible at scales less than the Planck length.

83. G.O. - Wissen Online / Hyperraum - Das Elegante Universum
Translate this page Bereits 1921 hat der deutsche Mathematiker theodor kaluza behauptet, dasssich die Gravitation und Elektromagnetismus in der fünften Dimension
Das elegante Universum Strings sind Herrscher über Materie und Energie Warum diese "verstrickte" Hyperraumwelt die letzten Fragen der Physiker beantworten kann, hat der amerikanische Buchautor und Physiker Brian Greene von der Columbia University in New York in seinem gerade auf deutsch erschienenen Buch "Das elegante Universum" entworren. "Unser Ohr nimmt die verschiedensten charakteristischen Schwingungsmuster als jeweils andere musikalische Töne wahr. Die Stringtheorie besitzt ähnliche Eigenschaften", schreibt Greene. So entstehen in unserem Kosmos nicht nur die Materie wie Protonen, Neutronen und Elektronen aus Strings, sondern auch Photonen, also Lichtteilchen. Strings sind die Herrscher über Materie und Energie, doch unseren Sinnen bleiben sie verschlossen, denn sie sind unvorstellbar klein: Würde ein String auf die Größe eines Atomkerns aufgepustet werden, dann wäre der Atomkern bereits so groß wie unser Sonnensystem! Mit den Strings lassen sich alle Grundkräfte vereinen und zu der ersehnten "Theorie von Allem" entwickeln, die auch die Fragen nach dem Urknall und den Schwarzen Löchern beantworten könnte. Bereits 1921 hat der deutsche Mathematiker Theodor Kaluza behauptet, dass sich die Gravitation und Elektromagnetismus in der fünften Dimension vereinheitlichen ließen. Der schwedische Physiker Oscar Klein ergänzte 1926 die Idee, indem er behauptete, diese fünfte Dimension sei so stark aufgerollt, dass sie für uns unsichtbar ist. Die daraus entstandene Kaluza-Klein-Theorie bildet bereits die mathematische Grundlage für die heutige Hyperraum-Physik.

84. Forces And Unification
In 1919 theodor kaluza showed how to derive electromagnetism from general relativityby using five dimensions. Unfortunately we only observe four dimensions.
The Four (or Five) Forces and Unification
There are known to be four distinct forces of nature; gravitation, electromagnetic, weak nuclear and strong nuclear, but a number of physicists have suggested the existence of a fifth (and sixth) force. Gravity is a very weak attractive force which acts over long distances between massive bodies. It is responsible for planetary orbits, star formation and black holes. Electromagnetism is a strong force which also acts over long distances between charged bodies. It is responsible for chemical bonds, friction, tension in ropes, and the forces used in electric motors. The strong nuclear force is the short range force which acts within nucleons to hold together quarks to form protons and neutrons. The force between protons and neutrons is a residual effect of the strong force. The weak nuclear force acts on all particles but is dominated by the strong force in those particles that contain quarks. Its effects are seen between electrons and neutrinos and its major roe is in beta decay. The weak force probably has no range at all, the particles concerned need to be touching. The fifth force, as yet unnamed (and unconfirmed), is a repulsive one which has been claimed by a number of observers making accurate gravity measurements. One suggestion is that there are in fact two forces, one attractive and one repulsive which in many materials exactly cancel to give no force. Jim Thomas of Lawrence Livermore laboratories suggests that the neutron - proton ratio may be a key factor. In one experiment a hollow copper sphere floating in a water tank moves away from an adjacent cliff. The repulsion force being caused by the fact that the copper has more neutrons than the water. However a more sensitive beryllium - copper torsional balance records no such motion.

85. Seven Dimensional (and Up) Einsteinian Hyperspherical Universe - Supplemental Ma
doctoral thesis in 1851, the feasibility of another dimension was taken more seriouslywhen an unknown Prussian mathematician, theodor kaluza, wrote a letter
Supplemental Material
A Cosmological Model With An "Uncompactified" Fourth Spatial Dimension
by Michael R. Feltz Abstract Recently two physicists, Lisa Randall and Raman Sundrum, proposed an "uncompactified" fourth spatial dimension with a "3-brane" on its surface in which we observe most, but not all, physical activity. The discussion here describes what assumptions are necessary to derive a universe with this "uncompactified" fourth spatial dimension. Introduction The Lisa Randall - Raman Sundrum suggestion in 1999 of an "uncompactified" fourth spatial dimension was not the first time it's been mentioned in this manner. Although the positively curved space now associated with a four-dimensional hypersphere was described in Georg Riemann's doctoral thesis in 1851, the feasibility of another dimension was taken more seriously when an unknown Prussian mathematician, Theodor Kaluza, wrote a letter to Albert Einstein in 1919 noting that the existence of a fourth spatial dimension would unify gravity and electromagnetic radiation. Einstein's tardy reply in 1921 agreed with Kaluza's suggestion.

86. Physics Post :: Daily Physics And Science Articles
In 1919 a relatively unknown Polish mathematician named theodor Kaluzachallenged the obvious. He attempted to unify the General

87. Piêkno Wszech¶wiata - Brian Greene - Biblioteka - Wirtualny Wszech¶wiat
Niemniej w 1919 roku malo znany matematyk polskiego pochodzenia, theodor Kaluzaz Uniwersytetu w Królewcu, mial czelnosc podwazyc to, co oczywiste.
W Na bie¿±co: I nformacje C o nowego Matematyka i przyroda: A stronomia B iologia ... odelowanie rzeczywisto¶ci Humanistyka: F ilozofia H istoria ... ztuka Czytaj: B iblioteka D elta ... ielcy i wiêksi Przydatne: S ³owniki C o i gdzie studiowaæ ... szech¶wiat w obrazkach Jeste¶ tutaj: Wirtualny Wszech¶wiat Biblioteka Fizyka Jeste¶ tutaj Piêkno Wszech¶wiata
Brian Greene Rozdzia³ 8
Tekst niniejszy jest rozdzia³em 8 ksi±¿ki Briana Greene'a "Piêkno Wszech¶wiata. Superstruny, ukryte wymiary i poszukiwania teorii ostatecznej" , która ukaza³a siê w marcu 2001 r. w serii "Na ¶cie¿kach nauki". Szukacz Przeszukaj Wirtualny Wszech¶wiat: Jak zadawaæ pytania?
UKRYTE WYMIARY Dziêki szczególnej i ogólnej teorii wzglêdno¶ci Einsteinowi uda³o siê rozwik³aæ dwie zasadnicze sprzeczno¶ci naukowe ostatniego stulecia. Kiedy dostrzeg³ owe problemy, nie przypuszcza³, ¿e ich usuniêcie zrewolucjonizuje nasze pogl±dy na przestrzeñ i czas. Teoria strun rozwi±zuje trzeci± z wielkich zagadek ostatniego stulecia. Wymaga jednak, aby¶my poddali nasze wyobra¿enia o przestrzeni i czasie tak radykalnej zmianie, ¿e nawet Einsteinowi wyda³aby siê ona niezwyk³a. Teoria strun wstrz±sa podstawami wspó³czesnej fizyki. Zdecydowanie i przekonuj±co odrzuca nawet powszechnie przyjêt± liczbê wymiarów Wszech¶wiata - warto¶æ uznawan± dot±d za niepodwa¿aln±.
Iluzja znajomo¶ci
Do¶wiadczenie kszta³tuje intuicjê. Tworzy tak¿e uk³ad odniesienia dla analizowanych i interpretowanych zjawisk. Niew±tpliwie spodziewamy siê, ¿e na przyk³ad dziecko wychowane przez stado wilków bêdzie interpretowa³o ¶wiat zupe³nie inaczej ni¿ my. Nawet porównywanie ludzi wyros³ych w ró¿nych kulturach uwidacznia przemo¿ny wp³yw do¶wiadczeñ na nasz sposób my¶lenia.

88. Unificación De Fuerzas Fundamentales
Translate this page Esta idea no es nueva, ya que en los años '20 fue introducida por Oscar Klein yTheodor kaluza en un intento por unificar la GR con el Electromagnetismo de
Xavier Amador
: 15/Mar/03 Resumen
Presentamos un breve bosquejo de las que describen las 4 interacciones fundamentales conocimiento actual
Nuestra de la Naturaleza depende de la forma en que la interpretamos
y representamos N.A
en el fondo no es diferente a otras manifestaciones culturales.

en " La Belleza de los Coloides , vol.6, No.3 (julio-sept, 2002)
la gravedad
(descrita por la Relativitad General electromagnetismo (descrito por la (descrita por la 3 fuerzas . A escalas de nuevas interacciones
Esto parece sugerir que la llamada " ciencia de los de muchos cuerpos el 'todo' (tal y como el conocimiento convencional lo ha estado describiendo hasta ahora) no es la suma de sus partes aspecto lineal verdadera naturaleza no-lineal es realmente efectivo/adecuado el utilizado para describir al mundo real? todas las variables necesarias (para describir correctamente La respuesta inevitable y obvia es: no. La existencia de autoensamblado self-organizing , la realidad sobre-simplificada vida " no puede ser reducida simplemente a genes, la "

89. Oskar Klein
1926 yilina dogru kaluza klein kuramina kasmistir kendileri (theodorkaluza'nin kuramina kuantum mekaniginden ögeler katmistir). klein

90. RKOM -> RKOM TECH -> ARTIKEL -> Subraum
Translate this page Obwohl das so unumstößlich scheint, wagte es dennoch der polnische MathematikerTheodor kaluza, im Jahre 1919 diese Selbstverständlichkeit in Frage zu
Allgemeines (Einsteins Traum)
Albert Einstein träumte von einer allumfassenden Theorie. Also einer Theorie, die alle Naturphänomene in einem Bezugsrahmen zu stellen vermag. Diesen Ansatz konnte er in die erfolgreiche Beschreibung der Gravitationskräfte in der allgemeinen Relativitätstheorie verfolgen. Das Revolutionäre der einsteinschen Theorie war dabei die Idee, nicht Kraftwirkungen an sich zu untersuchen, sondern die Gravitationskraft als eine geometrische Eigenschaft des Raumes, also der Raumkrümmung aufzufassen. Dadurch kam ein ganz neues Verständnis zum Wesen der Zeit zustande. Dieser Idee der geometrischen Eigenschaft des Raumes blieb Einstein auch treu, als er eine Grundlage der heutigen Quantenmechanik erfolgreich beschreiben konnte: Die Dualität von Welle und Teilchen. Welle und Teilchen wurden zu einer Einheit zusammengefasst. Mal kommen eher die Teilchencharakteristika zum Tragen und mal die Wellencharakteristika einer Einheit. Hierzu fehlte aber eine korrekte Beschreibung dieser Einheit. Statt dessen aber nahm man dieses ungelöste Problem hin und gab sich mit Wahrscheinlichkeitsamplituden zufrieden. Diese wurden als grundsätzliche Eigenschaft des Universums angesehen. Dabei aber konnte und wollte Einstein nicht mitmachen. Leider konnte er kein Alternativkonzept zur Verfügung stellen, was dafür sorgte, dass seiner richtigen Kritik nicht die nötige Aufmerksamkeit geschenkt wurde.

91. TOE Bibliography
Publication copy for YGGDRASIL The Journal of Paraphysics Copyright © 1998 Abbott, Edwin A. A. Flatland A Romance of Many Dimensions. New York Barnes Noble, 1963 Reprint of the 2nd edition, Oxford Blackwell, and London Seeley, 1884.
Publication copy for YGGDRASIL: The Journal of Paraphysics
Bibliography Abbott, Edwin A. [A. Square]. Flatland: A Romance of Many Dimensions. nd edition, Oxford: Blackwell, and London: Seeley, 1884. Abramenko, B. "On Dimensionality and Continuity of Physical Space and Time." British Journal for the Philosophy of Science d'Abro, A. The Evolution of Scientific Thought from Newton to Einstein nd edition. New York: Dover, 1950; 1 st Adams, George. Physical and Etherial Spaces . London: Rudolf Steiner Press, 1965. Aklom, G.M. "Some Fourth-Dimensional Curiosities." The Fourth Dimension Simply Explained. Manning: 134-143. Alcock, James. "Parapsychology As a "Spiritual Science"." Skeptic's Handbook. Kurtz: 537-565. Armstrong, Karen. A History of God: The 4,000-Year Quest of Judaism, Christianity and Islam . New York: Ballantine Books, 1993. Archibald, Richard Claire. "Non-Euclidean Geometry." Bulletin of the American Mathematical Society Archibald, Richard Claire. "Unpublished Letters of J.J. Sylvester and other new information concerning his Life and Work." Osiris Ashby, Robert H.

92. Curled-Up Dimensions
One of the first suggestions for closed cylindrical dimensions was made by TheodorKaluza in 1919, in a paper communicated to the Prussian Academy by Einstein
7.4 Curled-Up Dimensions The simplest cylindrical space can be represented by the perimeter of a circle. This one-dimensional space with the coordinate X has the natural embedding in two-dimensional space with orthogonal coordinates (x ,x ) given by the circle formulas x /R = cos(X/R) x /R = sin(X/R) From the derivatives dx /dX = sin(X/R) and dx /dX = cos(X/R) we have the Pythagorean identity (dx + (dx = (dX) . The length of this cylindrical space is 2 p R. We can form the Cartesian product of n such cylindrical spaces, with radii R , R , ..,R n respectively, to give an n-dimensional space that is cylindrical in all directions, with a total "volume" of V = (2 p n R R ... R n For example, a three-dimensional space that is everywhere locally Euclidean and yet cylindrical in all directions can be constructed by embedding the three spatial dimensions in a six-dimensional space according to the parameterization x = R cos(X/R x = R sin(X/R x = R cos(Y/R x = R sin(Y/R x = R cos(Z/R x = R sin(Z/R so the spatial Euclidean line element is dx + dx + dx + dx + dx + dx = dX + dY + dZ giving a Euclidean spatial metric in a closed three-space with total volume (2 p R R R . Subtracting this from an ordinary temporal component gives an everywhere-locally-Lorentzian spacetime that is cylindrical in the three spatial directions, i.e.

93. Untitled
The summary for this Korean page contains characters that cannot be correctly displayed in this language/character set.
1980년대에 물리학자들은 초중력을 이용하여 자연계의 힘을 통합하려고 했다. 초중력을 통해 힘들이 통합될려면 시공간은 4차원 이 아니라 11차원이 되어야 한다는 결론을 내렸다. 그중 일곱 개의 차원은 아주 작은 부분(Plank scale)으로 말려들어 갔기 때문 에 우리가 관측하는 실제 우주는 4차원만 존재하게 된다. 이것은 1900년대 초에 Kaluza-Klein이론에서 실마리를 찾을 수 있다.
1919년에 Theodor Kaluza는 시공간이 4차원이 아니라 5차원으로 되어있고, 다섯 번째 차원은 아주 작은 원안으로 수축되어 있다 고 가정을 하였다[그림4-1]. 이것은 마치 이차원의 고무호스를 멀리서 볼 때 일차원의 선으로 보이는 것과 같은 원리이다. Kaluza의 이론에서 시공의 각점은 x, y, z, t의 차원에 θ라는 차원을 하나더 가지고 있다. 이 θ는 아주 작은 원 안으로 줄어 들어 있기 때문에 실제로 관측되지는 않는다. 그러므로 θ의 방향으로 관측되는 모든 물리현상은 변하지 않는다. 그림에서 θ는 각도를 나타내는데 각도에 대한 변환에서 물리현상이 변하지 않는 것은 전자기력에서의 게이지 대칭성(gauge symmetry)와 같다. 실제 시공을 5개의 차원(x ,x ,x ,x ,x ,x )으로 놓고 일 반상대론의 중력 방정식을 푼 결과, 네 성분의 해는 한 차원의 시간과 세 개 차원의 공간이 되고, 다섯 번 째성분의 해는 전자기 력에서의 포텐셜(A

Translate this page and contrasts. 5028 Chatterji/, 167-178. 5038 Detlef Laugwitz TheodorKaluza 1885-1954. 5028 Chatterji/, 179-187. 5039 Pesi Masani

A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

Page 5     81-94 of 94    Back | 1  | 2  | 3  | 4  | 5 

free hit counter